Experimental optimization Lecture 8: Multi-armed bandits II: Thompson sampling

David Sweet

Review **Versions / arms**

- Compare "version A" to "version B", or
- Compare "arm A" to "arm B"
- Also could compare arms A, B, C, D, ...
- Examples
 - A = old ML model, B = new ML model with more features
 - A = place ad on top, B = place ad on side, C = overlay ad
 - A = low threshold, B = medium threshold, C = high threshold

Review A/B test vs. epsilon-greedy

- Goal: Choose arm/version with highest expected (true) business metric.
- A/B test: Randomize 50/50 between A & B, N times.
- Epsilon-greedy: Randomize 90% to the arm that's "better so far" and ε =10% to the other arm.
 - Decay ε and stop when ε is very small.

•
$$\varepsilon_n = \frac{kc(BM_0/PS)^2}{n}$$

Review Meta-parameters

- A/B test: Choose FPR, FNR limits (5% and 20%)
- Epsilon-greedy: Choose a value for c, the meta-parameter and a threshold telling us when to stop (when eps is small enough)
- meta-parameters determine how the experimental method operates
- Contrast with *parameters* which determine how the engineered system operates
- Prefer not to have to tune meta-parameters since that would require many experiments (a "meta-experiment"?)

Randomization **Epsilon-greedy modifies randomization**

- Given n_a individual measurements of A, n_b ind. meas. of B • <u>A/B</u>: Run A or B with equal probability

Epsilon-greedy:
$$\mu_a = \frac{\sum a_i}{n_a}, \mu_b = -\frac{1}{n_a}$$

- 90%: If $\mu_a > \mu_b$, run A, else run B
- 10%: Run A or B with equal probability

- $\sum b_i$ n_b

Thompson sampling Also modifies randomization

- Given: n_a individual measurements of A, n_b ind. meas. of B
- Sample from ind. meas. with replacement: \tilde{a}_i , \tilde{b}_i

$$\tilde{\mu}_a = \frac{\sum \tilde{a}_i}{n_a}, \, \tilde{\mu}_b = \frac{\sum \tilde{b}_i}{n_b}$$

• 100%: If $\tilde{\mu_a} > \tilde{\mu_b}$, run A, else run B

"Bootstrap"

Compare **Two multi-armed bandit solutions**

Thompson sampling Epsilon-greedy Resample ind. meas. Calculate agg. meas. Calculate agg. meas. from ind. meas. from *resampled* ind. meas 90%: Choose arm with 100%: Choose arm with highest agg. highest agg. 10%: Choose randomly

Randomness generates exploration

Randomness generates exploration

- Sample from ind. meas. with replacement: \tilde{a}_i, \tilde{b}_i
- Kind of like rerunning the experiment up to this point and getting a new set of individual measurements

2.0 2.25 2.0 1.5 2.75 2.25 2.0 1.75

2.0

2.75

def bootstrap_sample(x): return x[np.random.randint(len(x), size=(len(x),))]

bootstrap_sample(np.array([1,2,3,4]))

array([3, 4, 4, 2])

for _ in range(10): print (bootstrap_sample(np.array([1,2,3,4])).mean())

- Recall:
 - Aggregate measurement, μ_a , is an estimate of the expectation of the individual measurements, a_i , i.e., the true BM
 - CLT says agg. meas. approximates a normal distribution (for large N)
 - Each experiment gives a single aggregate measurement
 - (But I did say bootstrap was *like* running another experiment...)

- With B.S. sampling, you can generate many agg. meas., 1600 $\tilde{\mu_a}$, from a single set of 1400 ind. meas. 1200
- Even for small N $1000 \cdot$
 - 800
 - 600
 - 400
 - 200

```
for _ in range(10000)])
```


- Each value, $\tilde{\mu_a}$ is an equallyreasonable estimate of BM
- Note: More values near the middle (taller bars), where the true BM is

- Decision rule: If $\tilde{\mu_a} > \tilde{\mu_b}$, run A.
 - Based on a single bootstrap sample.
 - Different bootstrap sample ==> different decision.
- Think: $P\{\tilde{\mu}_a > \tilde{\mu}_b\} == P\{\text{I run } A\}$
 - OR, P{A is better} == P{I run A}
 - Calc many B.S. samples and check $\tilde{\mu_a} > \tilde{\mu_b}$ each time.
- as far as I can tell from my individual measurements.

"belief"

The fraction of time that $\tilde{\mu_a} > \tilde{\mu_b}$ can be thought of as the probability that A is better than B

Thompson sampling Randomized probability matching

- The rule: "Run A if $\tilde{\mu_a} > \tilde{\mu_b}$ "
 - Randomize to run A in proportion to the probability that A is better than B.
- For multiple arms, "Run arm k if $\tilde{\mu}_k = \max{\{\tilde{\mu}_{k'}\}}$ "
 - Randomize to run arm k in proportion to the probability that arm k is the best arm.
- "probability matching": P{running an arm} = P{arm is best}

Thompson sampling Exploration vs. exploitation

- Exploration: Always allocating some individual measurements to worse arms
- Exploitation: Allocating more individual measurements to better arms
- P{arm k is best} equal for all k at the start, then differentiates as more individual measurements are collected
- Stop when highest P{arm k is best} > 1.0 threshold
- No meta-parameters besides threshold

Thompson sampling Exploration vs. exploitation

- Gets easier to tell the 200 (a) distributions apart as more ind. meas. are taken 100
- (a) —> (d) increasing N

Thompson sampling Stopping

- Estimate P{A is better} by ^{1.0} comparing many bootstrap sample means 0.8
- P{A is better} =
 [count of "A is better"] /
 [total number compared]

0.2 -

0.6

0.4

Thompson sampling **Compared to epsilon-greedy**

- [pro] Thompson sampling does not require you to choose the meta-parameter *C*
- it needs all of the individual measurements available to make a randomization decision.
 - Chapter 3 discusses a practical solution to this problem

[con] Thompson sampling is more complex than epsilon-greedy because

Thompson sampling Summary

- Randomize like this:
 - Create bootstrap mean for each arm, $\tilde{\mu}_{k}$
 - Run arm k if $\tilde{\mu}_k = \max{\{\tilde{\mu}_{k'}\}}$
- Equivalent to randomized probability matching:
 - P{run arm k} = P{arm k has the highest BM}
- Stop when the the highest P{arm k has the highest BM} > 1.0 threshold